

1D MEMS Scanning Mirror A290-F2K-1D 2D Hybrid Scanning Mirror A290-F2K-2D Customized Scanning Mirror

Features

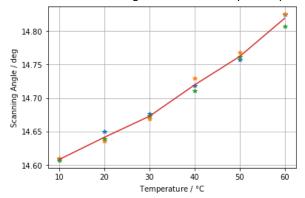
- Large optical aperture (290 mm²)
- Highly durable, high shock-resistance (1500 G)
- Built-in angle sensing with external read-out circuit

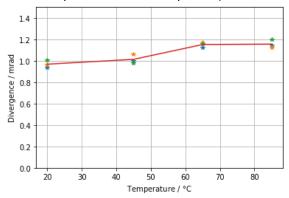
Applications

• Automotive LiDAR

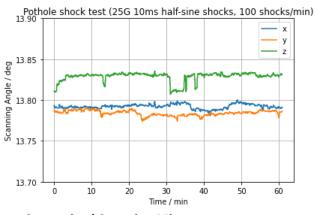
Outline

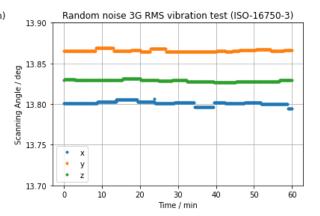
The 1D MEMS scanning mirror A290-F2K-1D, with a die size of 19.2mm x 18.8mm, is packed inside a standard LCC84 ceramic package, and sealed under an optical glass window with anti-reflection coating (wavelength customizable). The 2D hybrid scanning mirror A290-F2K-2D is composed of the 1D mirror A290-F2K-1D mounted on an electromagnetic scanner which can follow arbitrary control waveform.


Specification


Parameter	Condition	Value		Unit			
		Min.	Тур.	Max.			
1D MEMS scanning mirror							
Optical aperture			290		mm ²		
Optical scanning angle		_	±7.5	±10	0		
Optical divergence	The reflected beam divergence, assuming collimated beam incident on the entire	_	1	2	mrad		
	aperture						
Operation frequency	Resonance scanning	1900	2000	2100	Hz		
Power consumption	±7.5° optical scanning angle	0.6	0.75	0.9	mW		
Driving voltage	Sinusoidal wave, peak-to-peak voltage, ±7.5° optical scanning angle	65	70	75	V		
Driving current	±7.5° optical scanning angle	340	350	380	μΑ		
Mechanical Q-factor		55	60	65	_		
Angle detection noise	Optical angle, RMS noise	_	0.001	_	0		
Angle detection accuracy	Temperature oscillation 10 – 60 °C	_	0.02	0.05	0		
Mirror reflectivity	Wavelength 905 nm ~ 1550 nm	96	97.5	_	%		
G-Shock resistance	Half sine wave, 0.5 ms, 3 axis, 3 shocks each (AEC-Q100 automotive standard)	1500	_	_	G (9.8 m/s ²)		
2D hybrid scanning mirror, slow-axis							
Optical scanning angle		_	±30	±60	٥		
Angle detection accuracy	Using Hall-effect angle sensor, can be improved	_	0.024	_	o		
Angle control accuracy	Scanning 60° optical angle, and following 5Hz triangular control waveform	_	0.05	-	o		
Power consumption	Averaged over time		1.3		W		
Max. driving voltage			12		V		
Max. driving current	Stall current at max. driving voltage	_	2.2	_	Α		

Temperature Stability Test


• 1D MEMS scanning mirror driven in open-loop mode (i.e. drift compensable in close-loop mode)



Vibration/Pothole Stability Test

- 1D MEMS scanning mirror driven in open-loop mode (i.e. drift compensable in close-loop mode)
- Pothole shock profile: 25G 10ms half-sine wave (GMW3172)
- Vibration profile: Random 3G RMS (ISO-16750-3)

Customized Scanning Mirror

The scanning mirror can be made according to customers' specification. A non-recurring engineering (NRE) fee will be charged. The customizable parameters are listed below.

Parameter	Customization Range	Risk	Potential Challenges
Aperture size	5~1000 mm²	None (5~290 mm ²) Low (290~500 mm ²) Mid (500~1000 mm ²)	 Cost increases with aperture Difficult to find off-the-shelf packages for large apertures
Aperture shape	Rectangle, customizable aspect ratio	None	• None
Maximum scanning angle	0~30° optical	None (0~20°) Low (20°~30°)	Beam divergence scales linearly with scanning angle
Operation frequency	500 ~ 15kHz	None (1.6k~7kHz) Low (1k~1.6kHz, 7k~15kHz) Mid (500~1kHz)	 High operation frequency (>7kHz) may require increased driving voltage Low operation frequency (<1.6kHz) reduces the device durability (e.g., the device may fail shock tests)